NONSTATIONARY POTENTIAL FLOW OF A POLYTROPIC GAS WITH DEGENERATE HODOGRAPH

(O NESTATSIONARNYKH POTENTSIAL' NYKH DVIZHENIIAKH POLITROPNOGO GAZA S VYROZHDENNYM GODOGRAFOM)

PMM Vol.23, No.5, 1959, pp. 940-943

A. F. SIDOROV
(Chelyabinsk)

```
(Received 8 August 1958)
```

We shall consider the nonstationary potential flow of a gas, assuming a polytropic equation of state. For this case, the velocity components u_{1}, u_{2}, u_{3} in Cartesian coordinates x_{1}, x_{2}, x_{3}, and the square of the velocity of sound θ satisfy the equations

$$
\begin{aligned}
& \frac{\partial u_{i}}{\partial t}+\sum_{k} u_{k} \frac{\partial u_{i}}{\partial x_{k}}+x \frac{\partial \theta}{\partial x_{i}}=0 \quad(i=1,2,3) \quad \text { (Euler's equations) } \\
& x \frac{\partial \theta}{\partial t}+\theta \sum_{k} \frac{\partial u_{k}}{\partial x_{k}}+x \sum_{k} u_{i} \frac{\partial \theta}{\partial x_{k}}=0 \quad \text { (continuity equation) }
\end{aligned}
$$

rot $u=0$ (potential condition).
Here $\kappa=1 /(\gamma-1)$ and y is the adiabatic index. The solution of the system of equations (1) gives a travelling wave of rank r if the rank of the matrix A

$$
A=\left|\begin{array}{cccc}
\frac{\partial u_{1}}{\partial x_{1}} & \frac{\partial u_{1}}{\partial x_{2}} & \frac{\partial u_{1}}{\partial x_{3}} & \frac{\partial u_{1}}{\partial t} \tag{2}\\
\dot{\partial \theta} & \cdots \dot{\partial \theta} & \dot{\partial \theta} & \dot{\partial \theta} \\
\frac{\partial x_{1}}{\partial x_{1}} & \frac{\partial \partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}} & \frac{\partial}{\partial t}
\end{array}\right|
$$

is equal to r, for a given solution [1]. Nikolsky, with the help of a "ranking function" Δ which he introduced, investigated functions of the second rank,

$$
\begin{equation*}
\nabla\left(u_{1}, u_{2}\right)=\sum_{k} u_{k} x_{k}-\varphi \tag{3}
\end{equation*}
$$

for the case of potential, stationary flows (here ϕ is the velocity potential). He obtained the differential equations for the functions Λ and ψ, assuming that $u_{3}=\psi\left(u_{1}, u_{2}\right)$. Ryzhov [2] investigated double waves in the case of potential nonstationary flow. In reference [1] double waves
in two dimensions were studied, without assuming the flow to be potential.
In the present note we investigate triple waves (waves of rank 3) for the case of three-dimensional, potential, nonstationary flow, by introducing the "ranking function" $\left(u_{1}, u_{2}, u_{3}, t\right)$.

We shall first consider the general case, for which $\theta=\theta\left(u_{1}, u_{2}, u_{3}\right)$ and u_{1}, u_{2}, u_{3} are functionally independent; the case $u_{3}=\psi\left(u_{1}, u_{2}\right)$ will be considered later.

Since the flow is potential, we have Cauchy's integral

$$
\begin{equation*}
\frac{\partial \varphi}{\partial t}+\frac{1}{2}\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right)+x \theta=F(t) \tag{4}
\end{equation*}
$$

where $F(t)$ is an arbitrary function of time, and

$$
\begin{equation*}
\frac{\partial \varphi}{\partial x_{i}}=u_{i} \quad(i=1,2,3) \tag{5}
\end{equation*}
$$

Next we introduce the function Δ defined by

$$
\begin{equation*}
\nabla=\sum_{k} x_{k} u_{k}-x t \theta-\varphi \tag{6}
\end{equation*}
$$

and write its total differential

$$
\begin{equation*}
d \nabla=\sum_{k}\left(x_{k}-x t \theta_{k}\right) d u_{k}-\left(\frac{\partial \varphi}{\partial t}+x \theta\right) d t, \quad \theta_{k}=\frac{\partial \theta}{\partial u_{k}} \tag{7}
\end{equation*}
$$

Thus Δ is a function of u_{1}, u_{2}, u_{3}, and t, its partial derivatives being as follows:

$$
\begin{equation*}
\frac{\partial \nabla}{\partial u_{i}}=x_{i}-x t \theta_{i}, \quad \frac{\partial \nabla}{\partial t}=-\frac{\partial \varphi}{\partial t}-x \theta \tag{8}
\end{equation*}
$$

Making use of equation (4), the second equation of (8) may be written in the form

$$
\begin{equation*}
\frac{\partial \nabla}{\partial l}=\frac{1}{2}\left(u_{1}{ }^{2}+u_{2}{ }^{2}+u_{3}{ }^{2}\right)-F(t) \tag{9}
\end{equation*}
$$

Integrating (9) with respect to t, we obtain

$$
\begin{equation*}
\nabla=\frac{1}{2}\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right) t+\Phi\left(u_{1}, u_{2}, u_{3}\right)+F^{\circ}(t), F^{\circ}(t)=-\int F(t) d t \tag{10}
\end{equation*}
$$

where $\Phi\left(u_{1}, u_{2}, u_{3}\right)$ is some function, undetermined so far.
We put $\Phi\left(u_{1}, u_{2}, u_{3}\right)$ in the form

$$
\begin{equation*}
\Phi\left(u_{1}, u_{2}, u_{3}\right)=\frac{1}{2}\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right)+x \Pi\left(u_{1}, u_{2}, u_{8}\right) \tag{11}
\end{equation*}
$$

and differentiate (10) with respect to u_{i}. Then the first equation of (8) may be presented in the form

$$
\begin{equation*}
x_{i}=x \Pi_{i}+u_{i}+t\left(x \theta_{i}+u_{i}\right), \quad \Pi_{i}=\frac{\partial \Pi}{\partial u_{i}} \tag{12}
\end{equation*}
$$

Euler's equation of motion will be satisfied if Cauchy's integral holds, and it is necessary only to satisfy the continuity equation. Using the equations

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=\sum_{k} \theta_{k} \frac{\partial u_{k}}{\partial t}, \quad \frac{\partial \theta}{\partial x_{i}}=\sum_{k} \theta_{k} \frac{\partial u_{k}}{\partial x_{i}} \tag{13}
\end{equation*}
$$

and substituting $\partial u_{k} / \partial t$ from Euler's equations, we put the continuity equation in the form

$$
\begin{equation*}
\sum_{i k} A_{i k} \frac{\partial u_{i}}{\partial x_{k}}=0 \quad\left(A_{i k}=\delta_{i k} \theta-x^{2} \theta_{i} \theta_{k}\right) \quad(i, k=1,2,3) \tag{14}
\end{equation*}
$$

Let

$$
\begin{equation*}
\Delta=\frac{D\left(x_{1}, x_{2}, x_{3}\right)}{D\left(u_{1}, u_{2}, u_{3}\right)} \neq 0 \tag{15}
\end{equation*}
$$

in some region of x_{1}, x_{2}, x_{3}, t. Then, carrying out the hodograph transformation between the variables u_{1}, u_{2}, u_{3} and x_{1}, x_{2}, x_{3}, in equation (14), we will have, for fixed t,

$$
\sum_{i k} A_{i k} L_{i k}=0 \quad(i, k=1,2,3), \quad L_{i k}=(-1)^{i+k}\left|\begin{array}{ll}
\frac{\partial x_{m}}{\partial u_{p}} & \frac{\partial x_{n}}{\partial u_{p}} \tag{16}\\
\frac{\partial x_{m}}{\partial u_{q}} & \frac{\partial x_{n}}{\partial u_{q}}
\end{array}\right|_{(m, q \neq i, p<q)}
$$

From (12) we obtain

$$
\begin{equation*}
\frac{\partial x_{i}}{\partial u_{k}}=x \Pi_{i k}+\bar{o}_{i k}+t\left(x \theta_{i k}+\delta_{i k}\right), \Pi_{i k}=\frac{\partial^{2} \Pi}{\partial u_{i} \partial u_{k}}, \quad \theta_{i k}=\frac{\partial^{2} \theta}{\partial u_{i} \partial u_{k}} \tag{17}
\end{equation*}
$$

where $\delta_{i k}$ is the Kronecker symbol.
With (17), equations (16) may be put in the form

$$
\begin{equation*}
\Gamma_{0}+\Gamma_{1} t+\Gamma_{2} t^{2}=0 \tag{18}
\end{equation*}
$$

where $\Gamma_{0}, \Gamma_{1}, \Gamma_{2}$ are functions only of u_{1}, u_{2}, u_{3},
Since equation (18) is valid for arbitrary values of t, we conclude that

$$
\begin{equation*}
\Gamma_{i}=0 \quad(i=0,1,2) \tag{19}
\end{equation*}
$$

in which the expression for Γ_{i} is as follows:

$$
\Gamma_{j}=\sum_{i k} A_{i k} L_{i k}^{\cdot j} \quad(j=0,1,2)
$$

where

$$
\begin{gathered}
L_{i k}^{0}=(-1)^{i+k}\left|\begin{array}{ll}
x \Pi_{m p}+\delta_{m p} & x \Pi_{n p}+\delta_{n p} \\
x \Pi_{m q}+\delta_{m q} & x \Pi_{n q}+\delta_{n q}
\end{array}\right| \\
L_{i k}{ }^{1}=(-1)^{i+k}\left\{\left|\begin{array}{ll}
x \Pi_{m p}+\delta_{m p} & x \Pi_{n p}+\delta_{n p} \\
x \theta_{m q}+\delta_{m q} & x \theta_{n q}+\delta_{n q}
\end{array}\right|+\left|\begin{array}{ll}
x \theta_{m p}+\delta_{n p} & x \theta_{n p}+\delta_{n p} \\
x \Pi_{m q}+\delta_{m q} & x \Pi_{n q}+\delta_{n q}
\end{array}\right|\right\} \\
L_{i k}^{2}=(-1)^{i+k}\left|\begin{array}{cc}
x \theta_{m p}+\delta_{m p} & x \theta_{n p}+\delta_{n p} \\
x \theta_{m q}+\delta_{m q} & x \theta_{n q}+\delta_{n q}
\end{array}\right|
\end{gathered}
$$

and in all relations we have $m, n \neq k, m<n ; p, q \neq i, p<q$.
The equation $\Gamma_{2}=0$ is a nonlinear, second order partial differential equation for the function θ. It may be posed as the Cauchy problem, or, analogously to the problem posed in reference [1] as a Goursat problem with two arbitrary functions of two variables.

Without posing any definite gasdynamic problems and without investigating, in the present note, questions of uniqueness of solutions, we note that, after the function θ is found, the system of equations $\Gamma_{0}=0$ and $\Gamma_{1}=0$ (in which the function Π appears) is compatible, and has, for instance, the solutions

$$
\begin{equation*}
\mathrm{\Pi}=\theta+\sum_{k} c_{k} u_{k}+C \quad\left(c_{k}=\text { const, } C=\text { const }\right) \tag{20}
\end{equation*}
$$

In the solution of a definite gasdynamic problem, it is necessary, after determining the function θ, to find the function Π which satisfies the two equations $\Gamma_{0}=0$ and $\Gamma_{1}=0$, and the particular conditions of the problem, in order to obtain a unique solution.

After determination of the functions Π and θ, the flow in the x_{1}, x_{2}, x_{3}, t plane is found from equations (8).

We note that a completely analogous application of the method in the two-dimensional case leads to two differential equations for the functions Φ and θ, which are identical with the equations obtained for that case in reference [1].

Next we examine the functional dependence $u_{3}=\psi\left(u_{1}, u_{2}\right)$. We introduce. as before, the function Δ, but with a more restricted dependence on t :

$$
\begin{equation*}
\nabla=\sum_{k} u_{k} x_{k}-\varphi \tag{21}
\end{equation*}
$$

Taking the total differential, we find that Δ is a function of u_{1}, u_{2}, t

$$
\begin{equation*}
\frac{\partial \nabla}{\partial u_{i}}=x_{i}+\psi_{i} x_{3}, \quad \frac{\partial \nabla}{\partial t}=-\frac{\partial \varphi}{\partial t}, \quad \psi_{i}=\frac{\partial \psi}{\partial u_{i}}(i=1,2) \tag{22}
\end{equation*}
$$

Using relation (4) and also the relations

$$
\begin{equation*}
-\frac{\partial u_{i}}{\partial t_{1}}=\frac{\partial^{2} \nabla}{\partial t \partial x_{i}} \tag{23}
\end{equation*}
$$

which follow from the second equation in (22), we calculate the derivatives $\partial \theta / \partial x_{i}, \partial \theta / \partial t, \partial u_{3} / \partial x_{i}$ and put the expressions for them in the continuity equation. This then takes the form

$$
\begin{equation*}
R_{0}+R_{1} \frac{\partial u_{1}}{\partial x_{1}}+R_{2} \frac{\partial u_{1}}{\partial x_{2}}+R_{3} \frac{\partial u_{2}}{\partial x_{1}}+R_{4} \frac{\partial u_{2}}{\partial x_{2}}=0 \tag{24}
\end{equation*}
$$

Here

$$
\begin{gather*}
R_{0}=F^{\prime}(t)+\frac{\partial^{2} \nabla}{\partial t^{2}}, \quad R_{1}=-\left(\frac{\partial^{2} \nabla}{\partial t \partial u_{1}}-\psi \psi_{1}-u_{1}\right)^{2}+\theta\left(1+\psi_{1}{ }^{2}\right) \tag{25}\\
R_{2}, R_{3}=-2\left(\frac{\partial^{2} \nabla}{\partial t \partial u_{1}}-u_{1}-\psi \psi_{1}\right)\left(\frac{\partial^{2} \nabla}{\partial t \partial u_{2}}-u_{2}-\psi \psi_{2}\right)+2 \theta \psi_{1} \psi_{2} \\
R_{4}=-\left(\frac{\partial^{2} \nabla}{\partial t \partial u_{2}}-u_{2}-\psi \psi_{2}\right)^{2}+\theta\left(1+\psi_{2}{ }^{2}\right) \\
0=\frac{1}{x}\left[F(t) \div \frac{\partial \nabla}{\partial t}-\frac{1}{2}\left(u_{1}^{2} \div u_{2}{ }^{2}+\psi^{2}\right)\right]
\end{gather*}
$$

In equation (24) we carry out the hodograph transformation for the pairs of variables u_{1}, u_{2} and x_{1}, x_{2}. Let

$$
\Delta=\frac{D\left(x_{1}, x_{2}\right)}{D\left(u_{1}, u_{2}\right)} \neq 0
$$

in some region. We exclude the case $\Delta=0$. Differentiating the first equality in (22) with respect to u_{1}, u_{2}, for fixed x_{3}, t, we find the expressions for $\partial x_{i} / \partial u_{k}(i, k=1$. 2$)$. Then, after carrying out the transformations, equations (24) may be put in the form

$$
\begin{equation*}
T_{0}+T_{1} x_{8}+T_{2} x_{3}^{2}=0 \tag{26}
\end{equation*}
$$

where T_{0}, T_{1}, T_{2} are functions of u_{1}, u_{2}, t.
Since x_{3} is arbitrary, it is necessary that $T_{i}=0, i=0,1,2$, the expressions for T_{i} then become as follows:

$$
\begin{gather*}
T_{1}=-R_{0}\left(\frac{\partial^{2} \nabla}{\partial u_{1}{ }^{2}} \frac{\partial^{2} \psi}{\partial u_{2}{ }^{2}}+\frac{\partial^{2} \nabla}{\partial u_{2}{ }^{2}} \frac{\partial^{2} \psi}{\partial u_{1}{ }^{2}}-2 \frac{\partial^{2} \nabla}{\partial u_{1} \partial u_{2}} \frac{\partial^{2} \psi}{\partial u_{1} \partial u_{2}}\right)- \\
\quad-R_{1} \frac{\partial^{2} \psi}{\partial u_{2}{ }^{2}}+\left(R_{2}+R_{3}\right) \frac{\partial^{2} \psi}{\partial u_{1} \partial u_{2}}-R_{4} \frac{\partial^{2} \psi}{\partial u_{2}{ }^{2}}=0 \tag{27}\\
T_{0}=R_{0}\left[\frac{\partial^{2} \nabla}{\partial u_{1}{ }^{2}} \frac{\partial^{2} \nabla}{\partial u_{2}^{2}}-\left(\frac{\partial^{2} \nabla}{\partial u_{1} \partial u_{2}}\right)^{2}\right]+R_{1} \frac{\partial^{2} \nabla}{\partial u_{2}{ }^{2}}-\left(R_{2}+R_{3}\right) \frac{\partial^{2} \nabla}{\partial u_{1} \partial u_{2}}+R_{4} \frac{\partial^{2} \nabla}{\partial u_{1}^{2}}=0 \\
T_{2}=R_{0}\left[\frac{\partial^{2} \psi}{\partial u_{1}{ }^{2}} \frac{\partial^{2} \psi}{\partial u_{2}{ }^{2}}-\left(\frac{\partial^{2} \psi}{\partial u_{1} \partial u_{2}}\right)^{2}\right]=0 \tag{28}
\end{gather*}
$$

Equation (28) allows two possibilities. Let us consider the first case

$$
R_{0}=F^{\prime}(t)+\frac{\partial^{2} \nabla}{\partial t^{2}}=0
$$

Hence

$$
\begin{equation*}
F(t)+\frac{\partial \nabla}{\partial t}=\Lambda\left(u_{1}, u_{2}\right), \quad \nabla=\Lambda\left(u_{1}, u_{2}\right) t+\chi\left(u_{1}, u_{2}\right)-\int F(t) d t \tag{29}
\end{equation*}
$$

where Λ and χ are certain functions.
In this case equations (27) will give three third order equations for ψ. Λ, and χ, which are the same as the system obtained in reference [2]. and which describe double waves.

Let us consider the second case:

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial u_{1}{ }^{2}} \frac{\partial^{2} \psi}{\partial u_{2}{ }^{2}}-\left(\frac{\partial^{2} \psi}{\partial u_{1} \partial u_{2}}\right)^{2}=0 \tag{30}
\end{equation*}
$$

Equation (30) is the equation of developed surfaces, if cylindrical surfaces of the form $f\left(u_{1}, u_{2}\right)=$ const are excluded. In this case Δ (u_{1}, u_{2}, t) has to satisfy equations (27), and it is necessary, generally speaking, to investigate their compatibility for a chosen ψ.

We have an example, for which these two equations prove to be compatible and new flows are obtained. Specifically, consider a flow with

$$
\psi=\alpha_{1} u_{1}+\alpha_{2} u_{2}+\alpha_{3} \quad\left(\alpha_{i}=\text { const }\right)
$$

The equation $T_{1}=0$ is automatically satisfied for such a flow. For $\Delta\left(u_{1}, u_{2}, t\right)$ there is left one equation, $T_{0}=0$, with $\psi_{1}=a_{1}, \psi_{2}=a_{2}$ as its coefficients.

We also note that all the flows investigated have straight characteristics in the x_{1}, x_{2}, x_{3}, t plane, as follows from equations (8) and (22).

In conclusion I wish to thank my scientific adviser, N.N. Ianenko, for his valuable critical comments.

BIBL IOGRAPHY

1. Pogodin, Iu. A., Suchkov, V.A. and Ianenko, N. N., O begushchikh volnakh uravnenii gazovoi dinamiki (On the travelling waves of the equations of gas dynamics). Dokl. Akad. Nauk SSSR Vol. 109, No. 3, 1958.
2. Ryzhov. O.S., 0 techeniiakh s vyrozhdennym godografom (On flows with a degenerate hodograph). PMM Vol. 21, No. 4, 1957.
